A New Theory about Interfacial Proton Diffusion Revisited: The Commonly Accepted Laws of Electrostatics and Diffusion Prevail

Author:

Knyazev Denis G.1ORCID,Silverstein Todd P.2ORCID,Brescia Stefania1ORCID,Maznichenko Anna1,Pohl Peter1ORCID

Affiliation:

1. Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria

2. Chemistry Department, Willamette University, Salem, OR 97301, USA

Abstract

The high propensity of protons to stay at interfaces has attracted much attention over the decades. It enables long-range interfacial proton diffusion without relying on titratable residues or electrostatic attraction. As a result, various phenomena manifest themselves, ranging from spillover in material sciences to local proton circuits between proton pumps and ATP synthases in bioenergetics. In an attempt to replace all existing theoretical and experimental insight into the origin of protons’ preference for interfaces, TELP, the “Transmembrane Electrostatically-Localized Protons” hypothesis, has been proposed. The TELP hypothesis envisions static H+ and OH− layers on opposite sides of interfaces that are up to 75 µm thick. Yet, the separation at which the electrostatic interaction between two elementary charges is comparable in magnitude to the thermal energy is more than two orders of magnitude smaller and, as a result, the H+ and OH− layers cannot mutually stabilize each other, rendering proton accumulation at the interface energetically unfavorable. We show that (i) the law of electroneutrality, (ii) Fick’s law of diffusion, and (iii) Coulomb’s law prevail. Using them does not hinder but helps to interpret previously published experimental results, and also helps us understand the high entropy release barrier enabling long-range proton diffusion along the membrane surface.

Funder

European Union

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3