Simulation of Shear-Thickening Liquid Transfer between U-Shaped Cell and Flat Plate

Author:

Dong Ling,Xing Jiefang,Wu Shuang,Guan Xiaomin,Zhu Hongjuan

Abstract

Based on the actual measurement of the shear-thickening properties of water-based inks, in order to improve the ink transfer rate, the PLIC (Piecewise Linear Interface Construction) interface tracking method and the VOF (Volume of Fluid) method are used to simulate the transfer process of the shear-thickening liquid between the U-shaped cell and the upwardly moving plate. The effects of substrate surface wettability, cell contact angle, and cell depth on liquid transfer were studied. The results showed that all can increase the liquid transfer rate, and the change of the cell contact angle also led to the difference in the breaking time of the liquid filament. In addition, the shallow plate effect was discovered in the study of cell depth. The shallow plate effect is a phenomenon by which the amount of liquid transferred and the liquid transfer rate are greatly improved when the depth of the cell decreases to a certain limit value. In addition, for the U-shaped cell, the optimization method combining the shallow printing plate effect and fillet can greatly improve the liquid transfer rate and solve the undesirable problems such as plate blocking. After optimization, a liquid transfer rate of about 85% can be achieved.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3