Ultra-Short-Term Power Prediction of Large Offshore Wind Farms Based on Spatiotemporal Adaptation of Wind Turbines

Author:

An Yuzheng1,Zhang Yongjun1,Lin Jianxi2,Yi Yang2,Fan Wei2,Cai Zihan1

Affiliation:

1. School of Electrical Power, South China University of Technology, Guangzhou 510641, China

2. System Analysis Department, Electric Dispatching and Control Center, Guangdong Power Grid Co., Ltd., Guangzhou 510000, China

Abstract

Accurately predicting the active power output of offshore wind power is of great significance for reducing the uncertainty in new power systems. By utilizing the spatiotemporal correlation characteristics among wind turbine unit outputs, this paper embeds the Diffusion Convolutional Neural Network (DCNN) into the Gated Recurrent Unit (GRU) for the feature extraction of spatiotemporal correlations in wind turbine unit outputs. It also combines graph structure learning to propose a sequence-to-sequence model for ultra-short-term power prediction in large offshore wind farms. Firstly, the electrical connection graph within the wind farm is used to preliminarily determine the reference adjacency matrix for the wind turbine units within the farm, injecting prior knowledge of the adjacency matrix into the model. Secondly, a convolutional neural network is utilized to convolve the historical curves of units within the farm along the time dimension, outputting a unit connection probability vector. The Gumbel–softmax reparameterization method is then used to make the probability vector differentiable, thereby generating an optimal adjacency matrix for the prediction task based on the probability vector. At the same time, the difference between the two adjacency matrices is added as a regularization term to the loss function to reduce model overfitting. The simulation of actual cases shows that the proposed model has good predictive performance in ultra-short-term power prediction for large offshore wind farms.

Funder

Key R&D Program Projects of Guangdong Province

Southern Power Grid Corporation Technology Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3