Doppler Radar Sensor-Based Fall Detection Using a Convolutional Bidirectional Long Short-Term Memory Model

Author:

Li Zhikun1ORCID,Du Jiajun1,Zhu Baofeng2,Greenwald Stephen E.3ORCID,Xu Lisheng1ORCID,Yao Yudong1,Bao Nan1ORCID

Affiliation:

1. The College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110167, China

2. The School of Computer Science and Engineering, Northeastern University & Neusoft Research of Intelligent Healthcare Technology, Shenyang 110167, China

3. The Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London E1 4NS, UK

Abstract

Falls among the elderly are a common and serious health risk that can lead to physical injuries and other complications. To promptly detect and respond to fall events, radar-based fall detection systems have gained widespread attention. In this paper, a deep learning model is proposed based on the frequency spectrum of radar signals, called the convolutional bidirectional long short-term memory (CB-LSTM) model. The introduction of the CB-LSTM model enables the fall detection system to capture both temporal sequential and spatial features simultaneously, thereby enhancing the accuracy and reliability of the detection. Extensive comparison experiments demonstrate that our model achieves an accuracy of 98.83% in detecting falls, surpassing other relevant methods currently available. In summary, this study provides effective technical support using the frequency spectrum and deep learning methods to monitor falls among the elderly through the design and experimental validation of a radar-based fall detection system, which has great potential for improving quality of life for the elderly and providing timely rescue measures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3