Abstract
Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems suffer from low SSVEP response intensity and visual fatigue, resulting in lower accuracy when operating the system for continuous commands, such as an electric wheelchair control. This study proposes two SSVEP improvements to create a practical BCI for communication and control in disabled people. The first is flicker pattern modification for increasing SSVEP response through mixing (1) fundamental and first harmonic frequencies, and (2) two fundamental frequencies for an additional number of commands. The second method utilizes a quick response (QR) code for visual stimulus patterns to increase the SSVEP response and reduce visual fatigue. Eight different stimulus patterns from three flickering frequencies (7, 13, and 17 Hz) were presented to twelve participants for the test and score levels of visual fatigue. Two popular SSVEP methods, i.e., power spectral density (PSD) with Welch periodogram and canonical correlation analysis (CCA) with overlapping sliding window, are used to detect SSVEP intensity and response, compared to the checkerboard pattern. The results suggest that the QR code patterns can yield higher accuracy than checkerboard patterns for both PSD and CCA methods. Moreover, a QR code pattern with low frequency can reduce visual fatigue; however, visual fatigue can be easily affected by high flickering frequency. The findings can be used in the future to implement a real-time, SSVEP-based BCI for verifying user and system performance in actual environments.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献