Edge Race-Tracking during Film-Sealed Compression Resin Transfer Molding

Author:

Vollmer Mario,Zaremba Swen,Mertiny PierreORCID,Drechsler Klaus

Abstract

Edge race-tracking is a frequently reported issue during resin transfer molding. It is caused by highly permeable channels and areas between the preform edge and cavity, which can significantly change the preform impregnation pattern. To date, information is scarce on the effect of edge race-tracking in compression resin transfer molding (CRTM). To close this gap, laboratory equipment was developed to study the CRTM preform impregnation via flow visualization experiments. The preform was thereby encapsulated in thin thermoplastic films sealing its impregnation. Film-sealed compression resin transfer molding (FS-CRTM) experiments of preforms with a small geometrical aspect ratio showed fast filling of the injection gap and a subsequent through-thickness preform impregnation. Creating an edge race-tracking channel, an additional lateral in-plane flow from the channel towards the preform center was observed, initiating soon after the injection started and caused by the spatial connection between the injection gap and the race-tracking channel. To diminish edge race-tracking, a passive flow control strategy was implemented via a split design of the upper tool to spatially isolate the injection gap from the channel and to pre-compact the preform edge. A delayed and reduced lateral race-tracking flow was observed, showing that the passive flow control strategy increases the process robustness of FS-CRTM regarding edge race-tracking effects.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

MDPI AG

Subject

General Medicine

Reference52 articles.

1. High Volume Manufacturing of Carbon Fiber Reinforced Plastics for Body in White http://voith.com/composites-en/20170516_Bad-Nauheim_Audi_Voith_Online.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3