Abstract
Large free-edge interfacial stresses induced in adhesively bonded joints (ABJs) are responsible for the commonly observed debonding failure in ABJs. Accurate and efficient stress analysis of ABJs is important to the design, structural optimization, and failure analysis of ABJs subjected to external mechanical and thermomechanical loads. This paper generalizes the high-efficiency semi-analytic stress-function variational methods developed by the authors for accurate free-edge interfacial stress analysis of ABJs of various geometrical configurations. Numerical results of the interfacial stresses of two types of common ABJs, i.e., adhesively bonded single-lap joints and adhesively single-sided joints, are demonstrated by using the present method, which are further validated by finite element analysis (FEA). The numerical procedure formulated in this study indicates that the present semi-analytic stress-function variational method can be conveniently implemented for accurate free-edge interfacial stress analysis of various type of ABJs by only slightly modifying the force boundary conditions. This method is applicable for strength analysis and structural design of broad ABJs made of multi-materials such as composite laminates, smart materials, etc.