Evaluation of Rainfall Temporal Distribution Models with Annual Maximum Rainfall Events in Seoul, Korea

Author:

Na Wooyoung,Yoo ChulsangORCID

Abstract

This study evaluated five models of rainfall temporal distribution (i.e., the Yen and Chow model, Mononobe model, alternating block method, Huff model, and Keifer and Chu model), with the annual maximum rainfall events selected from Seoul, Korea, from 1961 to 2016. Three different evaluation measures were considered: the absolute difference between the rainfall peaks of the model and the observed, the root mean square error, and the pattern correlation coefficient. Also, sensitivity analysis was conducted to determine whether the model, or the randomness of the rainfall temporal distribution, had the dominant effect on the runoff peak flow. As a result, the Keifer and Chu model was found to produce the most similar rainfall peak to the observed, the root mean square error was smaller for the Yen and Chow model and the alternating block method, and the pattern correlation was larger for the alternating block method. Overall, the best model to approximate the annual maximum rainfall events observed in Seoul, Korea, was found to be the alternating block method. Finally, the sensitivity of the runoff peak flow to the model of rainfall temporal distribution was found to be much higher than that to the randomness of the rainfall temporal distribution. In particular, in small basins with a high curve number (CN) value, the sensitivity of the runoff peak flow to the randomness of the rainfall temporal distribution was found to be insignificant.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference38 articles.

1. Effects of Rainfall Runoff Model Assumptions on Optimal Storm-Sewer System-Design;Nouh;Arab. J. Sci. Eng.,1987

2. A Method for Estimating Volume and Rate of Runoff in Small Watersheds,1973

3. Time distribution of rainfall in heavy storms

4. Design Practices for Water Resources;Jeong,2007

5. Rainfall Temporal Patterns for Design Floods;Pilgrim;J. Hydraul. Div. ASCE,1975

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3