Contrasting Responses among Aquatic Organism Groups to Changes in Geomorphic Complexity Along a Gradient of Stream Habitat Restoration: Implications for Restoration Planning and Assessment

Author:

Hasselquist Eliza,Polvi Lina,Kahlert Maria,Nilsson Christer,Sandberg Lisa,McKie Brendan

Abstract

Many stream restoration projects aim to increase geomorphic complexity, assuming that this increases habitat heterogeneity and, thus, biodiversity. However, empirical data supporting these linkages remain scant. Previous assessments of stream restoration suffer from incomplete quantification of habitat complexity, or a narrow focus on only one organism group and/or one restoration measure, limiting learning. Based on a comprehensive quantification of geomorphic complexity in 20 stream reaches in northern Sweden, ranging from streams channelized for timber floating to restored and reference reaches, we investigated responses of macroinvertebrates, diatoms, and macrophytes to multiple geomorphic metrics. Sediment size heterogeneity, which was generally improved in restored sites, favored macroinvertebrate and diatom diversity and macroinvertebrate abundance. In contrast, macrophyte diversity responded to increased variation along the longitudinal stream profile (e.g., step-pools), which was not consistently improved by the restoration. Our analyses highlight the value of learning across multiple restoration projects, both in identifying which aspects of restoration have succeeded, and pinpointing other measures that might be targeted during adaptive management or future restoration. Given our results, a combination of restoration measures targeting not only sediment size heterogeneity, but also features such as step-pools and instream wood, is most likely to benefit benthic biota in streams.

Funder

Naturvårdsverket

Sveriges Lantbruksuniversitet

Svenska Forskningsrådet Formas

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3