Nonlinear Unmixing via Deep Autoencoder Networks for Generalized Bilinear Model

Author:

Zhang Jinhua,Zhang Xiaohua,Meng Hongyun,Sun Caihao,Wang Li,Cao Xianghai

Abstract

Hyperspectral unmixing decomposes the observed mixed spectra into a collection of constituent pure material signatures and the associated fractional abundances. Because of the universal modeling ability of neural networks, deep learning (DL) techniques are gaining prominence in solving hyperspectral analysis tasks. The autoencoder (AE) network has been extensively investigated in linear blind source unmixing. However, the linear mixing model (LMM) may fail to provide good unmixing performance when the nonlinear mixing effects are nonnegligible in complex scenarios. Considering the limitations of LMM, we propose an unsupervised nonlinear spectral unmixing method, based on autoencoder architecture. Firstly, a deep neural network is employed as the encoder to extract the low-dimension feature of the mixed pixel. Then, the generalized bilinear model (GBM) is used to design the decoder, which has a linear mixing part and a nonlinear mixing one. The coefficient of the bilinear mixing part can be adjusted by a set of learnable parameters, which makes the method perform well on both nonlinear and linear data. Finally, some regular terms are imposed on the loss function and an alternating update strategy is utilized to train the network. Experimental results on synthetic and real datasets verify the effectiveness of the proposed model and show very competitive performance compared with several existing algorithms.

Funder

the National Natural Science Foundation of China

Aero-Science Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. Hyperspectral Remote Sensing Data Analysis and Future Challenges

2. An overview on hyperspectral unmixing: Geometrical, statistical, and sparse regression based approaches;Bioucas-Dias;Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium,2011

3. Spectral unmixing

4. Sparse Unmixing of Hyperspectral Data

5. Spectral unmixing-based post-processing for hyperspectral image classification;Dópido;Proceedings of the 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS),2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3