Detection of the New Class of Hypersonic Targets under Emerging Hyperspectral Sample Streams: An Unsupervised Isolation Forest Solution

Author:

Yuan ShurongORCID,Shi LeiORCID,Yao Bo,Zhai Yutong,Li Fangyan,Du YuefanORCID

Abstract

Rapid detection of the new class of hypersonic targets (HTs) presenting unknown military threats in space-based surveillance will guarantee aerospace security. This paper proposes an unsupervised subclass definition and an efficient isolation forest based on an anomalous hyperspectral feature selection (USD-EiForest) algorithm to detect the new class of never-before-seen HTs under emerging hyperspectral sample streams. First, we reveal that the hyperspectral features (HFs) of the new class of HTs have no anomaly characteristics when compared to the globally observed samples while having prominent anomaly characteristics when compared to the subclasses of observed samples. Second, an unsupervised subclass definition method adapted to HTs is utilized to classify the observed samples into several subclasses. Then, an efficient isolation forest is designed to determine whether the data stream sample in each subclass indicates anomaly features that mark the detection of the new class of hypersonic targets (DNHT). Finally, we experiment on the simulated hyperspectral HTs data sets considering the RAM-C II HT as the observed samples and the HTV-2 HT as the unknown samples. The results suggest that the performance of our proposal has competitive advantages in terms of accuracy and detection efficiency.

Funder

the National Natural Science Foundation of China

Innovation Capability Support Program of Shaanxi

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3