Google Earth Engine for Informal Settlement Mapping: A Random Forest Classification Using Spectral and Textural Information

Author:

Matarira Dadirai,Mutanga OnisimoORCID,Naidu Maheshvari

Abstract

Accurate and reliable informal settlement maps are fundamental decision-making tools for planning, and for expediting informed management of cities. However, extraction of spatial information for informal settlements has remained a mammoth task due to the spatial heterogeneity of urban landscape components, requiring complex analytical processes. To date, the use of Google Earth Engine platform (GEE), with cloud computing prowess, provides unique opportunities to map informal settlements with precision and enhanced accuracy. This paper leverages cloud-based computing techniques within GEE to integrate spectral and textural features for accurate extraction of the location and spatial extent of informal settlements in Durban, South Africa. The paper aims to investigate the potential and advantages of GEE’s innovative image processing techniques to precisely depict morphologically varied informal settlements. Seven data input models derived from Sentinel 2A bands, band-derived texture metrics, and spectral indices were investigated through a random forest supervised protocol. The main objective was to explore the value of different data input combinations in accurately mapping informal settlements. The results revealed that the classification based on spectral bands + textural information yielded the highest informal settlement identification accuracy (94% F-score). The addition of spectral indices decreased mapping accuracy. Our results confirm that the highest spatial accuracy is achieved with the ‘textural features’ model, which yielded the lowest root-mean-square log error (0.51) and mean absolute percent error (0.36). Our approach highlights the capability of GEE’s complex integrative data processing capabilities in extracting morphological variations of informal settlements in rugged and heterogeneous urban landscapes, with reliable accuracy.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3