Primary Interannual Variability Patterns of the Growing-Season NDVI over the Tibetan Plateau and Main Climatic Factors

Author:

Mao XinORCID,Ren Hong-LiORCID,Liu Ge

Abstract

The Tibetan Plateau (TP) vegetation plays an important role in the local ecosystem, which responds significantly to climate change and can affect local and large-scale weather and climate anomalies. However, little attention has been paid to its year-to-year variation. In this paper, using two NDVI datasets (GIMMS and MODIS) originated from satellite remote sensing, the variability characteristics of NDVI over the TP on the interannual time scale and associated local climatic factors were investigated. The results show that two primary patterns of NDVI governed TP during the main growing season (June–September, JJAS) for the period 1982–2020. The first one is a uniform pattern, with a consistent spatial variation over the entire TP, and the second is a dipole pattern, with an out-of-phase spatial variation of NDVI between the northern and southern TP. Interannual variations of the different climatic factors regulate the NDVI variability over the different regions of the TP. The interannual variability of the uniform NDVI pattern is mainly affected by the two local climatic factors, the preceding May–August precipitation and simultaneous JJAS sunshine duration. Specifically, NDVIs over the southern and eastern TP have a more significant response to the preceding precipitation and simultaneous sunshine duration, respectively. The variability of the dipole NDVI pattern is primarily modulated by the preceding May–August precipitation and simultaneous surface air temperature, ground surface temperature, and sunshine duration. However, NDVIs over the northern and southern TP have different degrees of response to the four climatic factors, with the most significant response being to preceding precipitation. The combined effect of these factors contributes to the formation of the interannual variability in the uniform and dipole patterns. This paper may shed light on deeply understanding the reasons for the inconsistency in variations of vegetation over the different regions of the TP under climate change. In addition to the effect of local climatic factors that this study focuses on, the influence of external climatic factors on the variability of the TP NDVI deserves further research in the future.

Funder

the National Key Research and Development Program on monitoring, Early Warning and Prevention of Major Natural Disaster

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3