Understanding Water Level Changes in the Great Lakes by an ICA-Based Merging of Multi-Mission Altimetry Measurements

Author:

Chen Wei,Shum C. K.,Forootan EhsanORCID,Feng Wei,Zhong Min,Jia Yuanyuan,Li Wenhao,Guo Junyi,Wang Changqing,Li Quanguo,Liang Lei

Abstract

Accurately monitoring spatio-temporal changes in lake water levels is important for studying the impacts of climate change on freshwater resources, and for predicting natural hazards. In this study, we applied multi-mission radar satellite altimetry data from the Laurentian Great Lakes, North America to optimally reconstruct multi-decadal lake-wide spatio-temporal changes of water level. We used the results to study physical processes such as teleconnections of El Niño and southern oscillation (ENSO) episodes over approximately the past three-and-a-half decades (1985–2018). First, we assessed three reconstruction methods, namely the standard empirical orthogonal function (EOF), complex EOF (CEOF), and complex independent component analysis (CICA), to model the lake-wide changes of water level. The performance of these techniques was evaluated using in-situ gauge data, after correcting the Glacial Isostatic Adjustment (GIA) process using a contemporary GIA forward model. While altimeter-measured water level was much less affected by GIA, the averaged gauge-measured water level was found to have increased up to 14 cm over the three decades. Our results indicate that the CICA-reconstructed 35-year lake level was more accurate than the other two techniques. The correlation coefficients between the CICA reconstruction and the in situ water-level data were 0.96, 0.99, 0.97, 0.97, and 0.95, for Lake Superior, Lake Michigan, Lake Huron, Lake Erie, and Lake Ontario, respectively; ~7% higher than the original altimetry data. The root mean squares of errors (RMSE) were 6.07 cm, 4.89 cm, 9.27 cm, 7.71 cm, and 9.88 cm, respectively, for each of the lakes, and ~44% less than differencing with the original altimetry data. Furthermore, the CICA results indicated that the water-level changes in the Great Lakes were significantly correlated with ENSO, with correlation coefficients of 0.5–0.8. The lake levels were ~25 cm higher (~30 cm lower) than normal during EI Niño (La Niña) events.

Funder

the Max-Planck-Society and the Chinese Academy of Sciences within the LEGACY (“Low-Frequency Gravitational Wave Astronomy in Space”) collaboration

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3