From Video to Hyperspectral: Hyperspectral Image-Level Feature Extraction with Transfer Learning

Author:

Sun YifanORCID,Liu BingORCID,Yu Xuchu,Yu AnzhuORCID,Gao KuiliangORCID,Ding Lei

Abstract

Hyperspectral image classification methods based on deep learning have led to remarkable achievements in recent years. However, these methods with outstanding performance are also accompanied by problems such as excessive dependence on the number of samples, poor model generalization, and time-consuming training. Additionally, the previous patch-level feature extraction methods have some limitations, for instance, non-local information is difficult to model, etc. To solve these problems, this paper proposes an image-level feature extraction method with transfer learning. Firstly, we look at a hyperspectral image with hundreds of contiguous spectral bands from a sequential image perspective. We attempt to extract the global spectral variation information between adjacent spectral bands by using the optical flow estimation method. Secondly, we propose an innovative data adaptation strategy to bridge the gap between hyperspectral and video data, and transfer the optical flow estimation network pre-trained with video data to the hyperspectral feature extraction task for the first time. Thirdly, we utilize the traditional classifier to achieve classification. Simultaneously, a vote strategy combined with features at different scales is proposed to improve the classification accuracy further. Extensive, well-designed experiments on four scenes of public hyperspectral images demonstrate that the proposed method (Spe-TL) can obtain results that are competitive with advanced deep learning methods under various sample conditions, with better time effectiveness to adapt to new target tasks. Moreover, it can produce more detailed classification maps that subtly reflect the authentic distribution of ground objects in the original image.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3