Application and Evaluation of Deep Neural Networks for Airborne Hyperspectral Remote Sensing Mineral Mapping: A Case Study of the Baiyanghe Uranium Deposit in Northwestern Xinjiang, China

Author:

Zhang ChuanORCID,Yi MinORCID,Ye Fawang,Xu Qingjun,Li Xinchun,Gan Qingqing

Abstract

Deep learning is a popular topic in machine learning and artificial intelligence research and has achieved remarkable results in various fields. In geological remote sensing, mineral mapping is an appealing application of hyperspectral remote sensing for geological surveyors. Whether deep learning can improve the mineral identification ability in hyperspectral remote sensing images, especially for the discrimination of spectrally similar and intimately mixed minerals, needs to be evaluated. In this study, shortwave airborne spectrographic imager (SASI) hyperspectral images of the Baiyanghe uranium deposit in Northwestern Xinjiang, China, were used as experimental data. Three deep neural network (DNN) models were designed: a fully connected neural network (FCNN), a one-dimensional convolutional neural network (1D CNN), and a one-dimensional and two-dimensional convolutional neural network (1D and 2D CNN). A sample dataset containing five minerals was constructed for model training and validation, which was divided into training, validation and test sets at a ratio of 6:2:2. The final test accuracies of the FCNN, 1D CNN, and 1D and 2D CNN were 91.24%, 93.67% and 94.77%, respectively. The three DNNs were used for mineral identification and mapping of SASI hyperspectral images of the Baiyanghe uranium mining area. The mapping results were compared with the mapping results of the support vector machine (SVM) and the mixture-tuned matched filtering (MTMF) method. Combined with the ground spectral data obtained by the spectrometer, spectral verification and interpretation were carried out on sections that the two kinds of methods identified differently. The verification results show that the mapping results of the 1D and 2D CNN were more accurate than those of the other methods. More importantly, for minerals with similar spectral characteristics, such as short-wavelength white mica and medium-wavelength white mica, the 1D and 2D CNN model had a more accurate discrimination effect than the other DNN models, indicating that the introduction of spatial information can improve the mineral identification ability in hyperspectral remote sensing images. In general, CNNs have good application prospects in geological mapping of hyperspectral remote sensing images and are worthy of further development in future work.

Funder

the Nuclear Power Development Project of the China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3