Estimation of Aboveground Biomass of Potatoes Based on Characteristic Variables Extracted from UAV Hyperspectral Imagery

Author:

Liu Yang,Feng HaikuanORCID,Yue Jibo,Li ZhenhaiORCID,Jin XiuliangORCID,Fan Yiguang,Feng Zhihang,Yang Guijun

Abstract

Aboveground biomass (AGB) is an important indicator for crop-growth monitoring and yield prediction, and accurate monitoring of AGB is beneficial to agricultural fertilization management and optimization of planting patterns. Imaging spectrometer sensors mounted on unmanned aerial vehicle (UAV) remote-sensing platforms have become an important technical method for monitoring AGB because the method is convenient, rapidly collects data and provides image data with high spatial and spectral resolution. To confirm the feasibility of UAV hyperspectral remote-sensing technology to estimate AGB, this study acquired hyperspectral images and measured AGB data over the potato bud, tuber formation, tuber growth, and starch-storage periods. The canopy spectrum obtained in each growth period was smoothed by using the Savitzky–Golay filtering method, and the spectral-reflection feature parameters, spectral-location feature parameters, and vegetation indexes were extracted. First, a Pearson correlation analysis was performed between the three types of characteristic spectral parameters and AGB, and the spectral parameters that reached a significant level of 0.01 in each growth period were selected. Next, the spectral parameters reaching a significance of 0.01 were optimized and screened by moving window partial least squares (MWPLS), Monte Carlo uninformative variable elimination (MC-UVE), and random frog (RF) methods, and the final model parameters were determined according to the thresholds of the root mean square error of cross-validation (RMSEcv), the reliability index, and the selected probability. Finally, the three optimal characteristic spectral parameters and their combinations were used to estimate the potato AGB in each growth period by combining the partial least squares regression (PLSR) and Gaussian process regression (GPR) methods. The results show that, (i) ranked from high to low, vegetation indexes, spectral-location feature parameters, and spectral-reflection feature parameters in each growth period are correlated with the AGB, and these correlations all first improve and then degrade in going from the budding period to the starch-storage period. (ii) The AGB estimation model based on the characteristic variables screened by the three methods in each growth period is most accurate with RF, less so with MC-UVE, and least accurate with MWPLS. (iii) Estimating the AGB with the same variables combined with the PLSR method in each growth period is more accurate than the corresponding GPR method, but the estimations produced by the two methods both show a trend of first improving and then worsening from the budding period to the starch-accumulation period. The accuracy of the estimation models constructed by PLSR and GPR from high to low is based on comprehensive variables, vegetation indexes, spectral-location feature parameters and spectral-reflection feature parameters. (iv) When combined with the RF-PLSR method to estimate AGB in each growth period, the best R2 values are 0.65, 0.68, 0.72, and 0.67, the corresponding RMSE values are 167.76, 162.98, 160.77, and 169.24 kg/hm2, and the corresponding NRMSE values are 19.76%, 16.01%, 15.04%, and 16.84%. The results of this study show that a variety of characteristic spectral parameters may be extracted from UAV hyperspectral images, that the RF method may be used for optimizing and screening, and that PLSR regression provides accurate estimates of the potato AGB. The proposed approach thus provides a rapid, accurate, and nondestructive way to monitor the growth status of potatoes.

Funder

Fenghaikuan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3