Time-Lagged Ensemble Quantitative Precipitation Forecasts for Three Landfalling Typhoons in the Philippines Using the CReSS Model, Part II: Verification Using Global Precipitation Measurement Retrievals

Author:

Wang Chung-Chieh,Tsai Chien-Hung,Jou Ben Jong-Dao,David Shirley J.,Pura Alvin G.,Lee Dong-In,Tsuboki Kazuhisa,Lee Ji-SunORCID

Abstract

In this study, high-resolution quantitative precipitation forecasts (QPFs) in lagged runs with a cloud-resolving model are evaluated for three typhoons in the Philippines: Mangkhut (2018), Koppu (2015), and Melor (2015), hitting northern Luzon, central Luzon, and the middle section of the Philippine archipelago, respectively. In Part I of this study, the QPFs were verified using 56 gauge observations on land over the Philippines. Here, in Part II, they are verified against the Global Precipitation Measurement (GPM) satellite estimates (also covering nearby oceans), using categorical scores in the same way. For each typhoon, rainfall valid at a selected 24 h period and the whole event (48 or 72 h) is examined. For 24 h rainfall inside the short range (lead time ≤ 72 h), good QPFs (with a threat score of ≥0.2) were produced for Koppu at 200 mm by almost all runs, and at 100 mm by all runs for Mangkhut, but only 22% of the runs for Melor. At longer lead times, good QPFs at 100 mm were also produced by all runs for Koppu, half of the runs for Mangkhut, and only 1 out of 16 runs for Melor. For whole events (48 or 72 h), the QPFs were similarly the best for Koppu, followed by Mangkhut, and least ideal for Melor. The quality of the GPM data during the three typhoons was found to be generally good and suitable for QPF verification, and the results were more stable and, thus, more reliable for the assessment of bias. However, the threat scores using the GPM dropped lower at high thresholds, and the results could become different from those obtained against the gauges (Part I), suggesting a much higher skill. Thus, verification using rain gauges is still needed toward high thresholds, especially over mountain regions where satellite estimates tend to exhibit larger errors.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference78 articles.

1. The Philippines is the most storm-exposed country on Earth;Brown;Time,2013

2. Development and validation of a sub-national multi-hazard risk index for the Philippines

3. Observed trends and impacts of tropical cyclones in the Philippines

4. Annual Disaster Statistical Review 2016. The Numbers and Trends;Guha-Sapir,2017

5. Effects of Typhoon “Yolanda” (Haiyan). SitRep. 108;NDRRMC (National Disaster Risk Reduction and Management Council),2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3