Modeling the Impact of Land Use Changes and Wastewater Treatment on Water Quality and Ecosystem Services in the Yongding River Basin, North China

Author:

Dai Dan1,Alamanos Angelos2ORCID

Affiliation:

1. Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL 32611, USA

2. Independent Researcher, 10243 Berlin, Germany

Abstract

Rapid socioeconomic development, urbanization, agricultural activities, and infrastructure development can greatly alter natural landscapes and their environmental impacts. Understanding these changes is crucial for more sustainable, integrated land management, including addressing water-related environmental challenges. In this study, we explored the impacts of two key factors on water quality and ecosystem services (ESs): land use change and the expansion of wastewater treatment (WWT) infrastructure by combining cellular automata Markov (CAM), water quality and environmental valuation modeling, and statistical analyses. We examined historic land use changes and forecasted their future evolution. The impacts were assessed by analyzing the spatial and temporal distribution of major water pollutants, water quality trends, and the economic valuation of ESs under real WWT expansion conditions, assessing a Chinese policy in effect. The Yongding River Basin in North China was selected as a case study due to significant urbanization and WWT changes over the past decades under arid conditions. The results indicate that pollutant loads were highest in urban areas, followed by rural areas, and that domestic WWT efficiency is a dominant factor in the spatial pattern of pollutant discharge. ES values decrease in the short term but can increase in the long term with WWT expansion, owing to the planned ecosystem restoration policy. This study provides valuable insights into the responses of water pollution and ESs to land use changes over spatiotemporal scales, encouraging the consideration of these factors in future land and infrastructure planning.

Publisher

MDPI AG

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3