Inulin-Coated ZnO Nanoparticles: A Correlation between Preparation and Properties for Biostimulation Purposes

Author:

Gontrani Lorenzo1ORCID,Bauer Elvira Maria2ORCID,Casoli Lorenzo1ORCID,Ricci Cosimo1,Lembo Angelo1,Donia Domenica Tommasa1ORCID,Quaranta Simone3ORCID,Carbone Marilena1ORCID

Affiliation:

1. Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy

2. Institute of Structure of Matter-Italian National Research Council (ISM-CNR), Strada Provinciale 35d, n. 9, 00015 Monterotondo, Italy

3. Institute for the Study of Nanostructured Materials-Italian National Research Council (ISMN-CNR), Strada Provinciale 35 d, n. 9, 00010 Montelibretti, Italy

Abstract

Within the framework of plant biostimulation, a pivotal role is played by the achievement of low-cost, easily prepared nanoparticles for priming purposes. Therefore, in this report, two different synthetic strategies are described to engineer zinc oxide nanoparticles with an inulin coating. In both protocols, i.e., two-step and gel-like one-pot protocols, nanoparticles with a highly pure ZnO kernel are obtained when the reaction is carried out at T ≥ 40 °C, as ascertained by XRD and ATR/FTIR studies. However, a uniformly dispersed, highly homogeneous coating is achieved primarily when different temperatures, i.e., 60 °C and 40 °C, are employed in the two phases of the step-wise synthesis. In addition, a different binding mechanism, i.e., complexation, occurs in this case. When the gel-like process is employed, a high degree of coverage by the fructan is attained, leading to micrometric coated aggregates of nanometric particles, as revealed by SEM investigations. All NPs from the two-step synthesis feature electronic bandgaps in the 3.25–3.30 eV range in line with previous studies, whereas the extensive coating causes a remarkable 0.4 eV decrease in the bandgap. Overall, the global analysis of the investigations indicates that the samples synthesized at 60 °C and 40 °C are the best suited for biostimulation. Proof-of-principle assays upon Vicia faba seed priming with Zn5 and Zn5@inu indicated an effective growth stimulation of seedlings at doses of 100 mgKg−1, with concomitant Zn accumulation in the leaves.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3