Identification of Molecular Mechanisms in Radiation Cystitis: Insights from RNA Sequencing

Author:

Mota Sabrina12ORCID,Ward Elijah P.1,Bartolone Sarah N.1,Chancellor Michael B.12,Zwaans Bernadette M. M.12

Affiliation:

1. Department of Urology, William Beaumont University Hospital, Corewell Health System, Royal Oak, MI 48073, USA

2. Department of Urology, Oakland University William Beaumont School of Medicine, Rochester Hills, MI 48309, USA

Abstract

Pelvic cancer survivors who were treated with radiation therapy are at risk for developing (hemorrhagic) radiation cystitis (RC) many years after completion of radiation therapy. Patients with RC suffer from lower urinary tract symptoms, including frequency, nocturia, pelvic pain, and incontinence. In advanced stages, hematuria can occur, potentially escalating to life-threatening levels. Current therapeutic options for RC are limited, partly due to ethical concerns regarding bladder biopsy in patients with fragile bladder tissue. This study aimed to leverage our established preclinical model to elucidate the molecular pathways implicated in radiation-induced tissue changes in the bladder. Female C57Bl/6 mice received a single dose of 40 Gy using CT-guided imaging and a two-beam irradiation approach using the SARRP irradiator. Bladders from irradiated and age-matched littermate controls were harvested at 1 week [n = 5/group] or 6 months [n = 5/group] after irradiation, RNA was harvested, and mRNA sequencing was performed at paired-end 150bp on the Illumina NovaSeq6000 with a target of 30 million reads per sample. Following RNA sequencing, thorough bioinformatics analysis was performed using iPathwayGuide v2012 (ADVAITA Bioinformatics). Findings of the RNA sequencing were validated using qPCR analysis. At 1 week post-irradiation, altered gene expression was detected in genes involved in DNA damage response, apoptosis, and transcriptional regulation. By 6 months post-irradiation, significant changes in gene expression were observed in inflammation, collagen catabolism, and vascular health. Affected pathways included the p53, JAK-STAT, and PI3K-Akt pathways. These findings were validated in vivo in bladder tissues from our preclinical model. This is the first study to determine the molecular changes in the bladder in response to radiation treatment. We have successfully pinpointed several pathways and specific genes that undergo modification, thereby contributing to the progression of radiation cystitis. These insights enhance our understanding of the pathophysiology of radiation cystitis and may ultimately pave the way to the identification of potential new therapeutic targets.

Funder

United States National Institute of Diabetes and Digestive and Kidney Diseases

Detroit Medical Center Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3