Neutrophil Extracellular DNA Traps in Response to Infection or Inflammation, and the Roles of Platelet Interactions

Author:

Chen William A.12ORCID,Boskovic Danilo S.13ORCID

Affiliation:

1. Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA

2. Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA

3. Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA

Abstract

Neutrophils present the host’s first line of defense against bacterial infections. These immune effector cells are mobilized rapidly to destroy invading pathogens by (a) reactive oxygen species (ROS)-mediated oxidative bursts and (b) via phagocytosis. In addition, their antimicrobial service is capped via a distinct cell death mechanism, by the release of their own decondensed nuclear DNA, supplemented with a variety of embedded proteins and enzymes. The extracellular DNA meshwork ensnares the pathogenic bacteria and neutralizes them. Such neutrophil extracellular DNA traps (NETs) have the potential to trigger a hemostatic response to pathogenic infections. The web-like chromatin serves as a prothrombotic scaffold for platelet adhesion and activation. What is less obvious is that platelets can also be involved during the initial release of NETs, forming heterotypic interactions with neutrophils and facilitating their responses to pathogens. Together, the platelet and neutrophil responses can effectively localize an infection until it is cleared. However, not all microbial infections are easily cleared. Certain pathogenic organisms may trigger dysregulated platelet–neutrophil interactions, with a potential to subsequently propagate thromboinflammatory processes. These may also include the release of some NETs. Therefore, in order to make rational intervention easier, further elucidation of platelet, neutrophil, and pathogen interactions is still needed.

Funder

Department of Basic Sciences. School of Medicine, Loma Linda University

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3