Fermented Protaetia brevitarsis Larvae Improves Neurotoxicity in Chronic Ethanol-Induced-Dementia Mice via Suppressing AKT and NF-κB Signaling Pathway

Author:

Lee Hyo Lim1ORCID,Kim Jong Min1ORCID,Go Min Ji1,Lee Han Su1,Kim Ju Hui1,Heo Ho Jin1ORCID

Affiliation:

1. Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea

Abstract

This study was investigated to examine the neuroprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced-dementia mice. Consumption of FPB by mice resulted in improved memory dysfunction in the Y-maze, passive avoidance, and Morris water maze tests. FPB significantly decreased oxidative stress by regulating levels of malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) in brain tissues. In addition, FPB restored cerebral mitochondrial dysfunction by modulating levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP. In addition, FPB enhanced the cholinergic system via the regulation of acetylcholine (ACh) content, acetylcholinesterase (AChE) activity, and expressions of AChE and choline acetyltransferase (ChAT) in brain tissues. FPB ameliorated neuronal apoptosis through modulation of the protein kinase B (AKT)/B-cell lymphoma (BCL)-2 signaling pathway. Also, FPB improved inflammation response by down-regulating the toll-like receptor (TLR)-4/nuclear factor (NF)-κB pathway. Additionally, FPB ameliorated synaptic plasticity via the increase of the expressions of synaptophysin (SYP), postsynaptic density protein (PSD)-95, and growth-associated protein (GAP)-43. Treatment with FPB also reinforced the blood–brain barrier by increasing tight junctions including zonula occludens (ZO)-1, occludin, and claudin-1. In conclusion, these results show that FPB can improve cognitive impairment via AKT/NF-κB pathways in ethanol-induced-dementia mice.

Funder

The Ministry of SMEs and Startups (MSS), Korea.

Publisher

MDPI AG

Reference54 articles.

1. Alcoholism and its effects on the central nervous system;Mukherjee;Curr. Neurovasc. Res.,2013

2. Association between alcohol consumption and Alzheimer’s disease: A Mendelian randomization study;Andrews;Alzheimers Dement.,2020

3. Lipids and oxidative stress associated with ethanol-induced neurological damage;Oxid. Med. Cell. Longev.,2016

4. Brain mitochondrial alterations after chronic alcohol consumption;Almansa;J. Physiol. Biochem.,2009

5. Oxidative stress in mitochondria: Decision to survival and death of neurons in neurodegenerative disorders;Naoi;Mol. Neurobiol.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3