Diffusion Mediates Molecular Transport through the Perivascular Space in the Brain

Author:

Tanaka Marie1,Hirayoshi Yoko1,Minatani Shinobu1,Hasegawa Itsuki1ORCID,Itoh Yoshiaki1ORCID

Affiliation:

1. Department of Neurology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan

Abstract

The perivascular space has been proposed as a clearance pathway for degradation products in the brain, including amyloid β, the accumulation of which may induce Alzheimer’s disease. Live images were acquired using a two-photon microscope through a closed cranial window in mice. In topical application experiments, the dynamics of FITC-dextran were evaluated from 30 to 150 min after the application and closure of the window. In continuous injection experiments, image acquisition began before the continuous injection of FITC-dextran. The transport of dextran molecules of different sizes was evaluated. In topical application experiments, circumferential accumulation around the penetrating arteries, veins, and capillaries was observed, even at the beginning of the observation period. No further increases were detected. In continuous injection experiments, a time-dependent increase in the fluorescence intensity was observed around the penetrating arteries and veins. Lower-molecular-weight dextran was transported more rapidly than higher-molecular-weight dextran, especially around the arteries. The largest dextran molecules were not transported significantly during the observation period. The size-dependent transport of dextran observed in the present study strongly suggests that diffusion is the main mechanism mediating substance transport in the perivascular space.

Funder

Japan Society for Promotion of Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3