Beyond Amyloid: A Machine Learning-Driven Approach Reveals Properties of Potent GSK-3β Inhibitors Targeting Neurofibrillary Tangles

Author:

Nwadiugwu Martin1ORCID,Onwuekwe Ikenna23ORCID,Ezeanolue Echezona45,Deng Hongwen1ORCID

Affiliation:

1. Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA

2. Neurology Unit, Department of Medicine, University of Nigeria Teaching Hospital, Ituku-Ozalla 400001, Enugu, Nigeria

3. Department of Medicine, College of Medicine, University of Nigeria, Enugu Campus, Nsukka 400001, Enugu, Nigeria

4. Center for Translation and Implementation Research (CTAIR), University of Nigeria, Nsukka 410001, Enugu, Nigeria

5. Healthy Sunrise Foundation, Las Vegas, NV 89107, USA

Abstract

Current treatments for Alzheimer’s disease (AD) focus on slowing memory and cognitive decline, but none offer curative outcomes. This study aims to explore and curate the common properties of active, drug-like molecules that modulate glycogen synthase kinase 3β (GSK-3β), a well-documented kinase with increased activity in tau hyperphosphorylation and neurofibrillary tangles—hallmarks of AD pathology. Leveraging quantitative structure–activity relationship (QSAR) data from the PubChem and ChEMBL databases, we employed seven machine learning models: logistic regression (LogR), k-nearest neighbors (KNN), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGB), neural networks (NNs), and ensemble majority voting. Our goal was to correctly predict active and inactive compounds that inhibit GSK-3β activity and identify their key properties. Among the six individual models, the NN demonstrated the highest performance with a 79% AUC-ROC on unbalanced external validation data, while the SVM model was superior in accurately classifying the compounds. The SVM and RF models surpassed NN in terms of Kappa values, and the ensemble majority voting model demonstrated slightly better accuracy to the NN on the external validation data. Feature importance analysis revealed that hydrogen bonds, phenol groups, and specific electronic characteristics are important features of molecular descriptors that positively correlate with active GSK-3β inhibition. Conversely, structural features like imidazole rings, sulfides, and methoxy groups showed a negative correlation. Our study highlights the significance of structural, electronic, and physicochemical descriptors in screening active candidates against GSK-3β. These predictive features could prove useful in therapeutic strategies to understand the important properties of GSK-3β candidate inhibitors that may potentially benefit non-amyloid-based AD treatments targeting neurofibrillary tangles.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3