The Role of Polyphenols in Modulating PON1 Activity Regarding Endothelial Dysfunction and Atherosclerosis

Author:

Sirca Teodora1ORCID,Mureșan Mariana1,Pallag Annamaria2,Marian Eleonora2ORCID,Jurca Tunde2ORCID,Vicaș Laura2ORCID,Tunduc Ioana3,Manole Felicia4,Ștefan Liana4

Affiliation:

1. Doctoral School of Biomedical Sciences, University of Oradea, No. 1 University Street, 410087 Oradea, Romania

2. Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania

3. Department of Cardiology, Clinical County Emergency Hospital of Bihor, Gheorghe Doja Street 65-67, 410169 Oradea, Romania

4. Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania

Abstract

The incidence and prevalence of cardiovascular diseases are still rising. The principal mechanism that drives them is atherosclerosis, an affection given by dyslipidemia and a pro-inflammatory state. Paraoxonase enzymes have a protective role due to their ability to contribute to antioxidant and anti-inflammatory pathways, especially paraoxonase 1 (PON1). PON1 binds with HDL (high-density lipoprotein), and high serum levels lead to a protective state against dyslipidemia, cardiovascular diseases, diabetes, stroke, nonalcoholic fatty liver disease, and many others. Modulating PON1 expression might be a treatment objective with significant results in limiting the prevalence of atherosclerosis. Lifestyle including diet and exercise can raise its levels, and some beneficial plants have been found to influence PON1 levels; therefore, more studies on herbal components are needed. Our purpose is to highlight the principal roles of Praoxonase 1, its implications in dyslipidemia, cardiovascular diseases, stroke, and other diseases, and to emphasize plants that can modulate PON1 expression, targeting the potential of some flavonoids that could be introduced as supplements in our diet and to validate the hypothesis that flavonoids have any effects regarding PON1 function.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3