Silver and Gold Complexes with NHC-Ligands Derived from Caffeine: Catalytic and Pharmacological Activity

Author:

Mariconda Annaluisa1ORCID,Iacopetta Domenico2ORCID,Sirignano Marco3ORCID,Ceramella Jessica2ORCID,D’Amato Assunta3ORCID,Marra Maria2,Pellegrino Michele2,Sinicropi Maria Stefania2ORCID,Aquaro Stefano2ORCID,Longo Pasquale3ORCID

Affiliation:

1. Department of Science, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy

2. Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy

3. Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy

Abstract

N-heterocyclic carbene (NHC) silver(I) and gold(I) complexes have found different applications in various research fields, as in medicinal chemistry for their antiproliferative, anticancer, and antibacterial activity, and in chemistry as innovative and effective catalysts. The possibility of modulating the physicochemical properties, by acting on their ligands and substituents, makes them versatile tools for the development of novel metal-based compounds, mostly as anticancer compounds. As it is known, chemotherapy is commonly adopted for the clinical treatment of different cancers, even though its efficacy is hampered by several factors. Thus, the development of more effective and less toxic drugs is still an urgent need. Herein, we reported the synthesis and characterization of new silver(I) and gold(I) complexes stabilized by caffeine-derived NHC ligands, together with their biological and catalytic activities. Our data highlight the interesting properties of this series as effective catalysts in A3-coupling and hydroamination reactions and as promising anticancer, anti-inflammatory, and antioxidant agents. The ability of these complexes in regulating different pathological aspects, and often co-promoting causes, of cancer makes them ideal leads to be further structurally functionalized and investigated.

Funder

PRIN 2022 PNRR

PRIN 2022

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3