Adult Neurogenesis of the Medial Geniculate Body: In Vitro and Molecular Genetic Analyses Reflect the Neural Stem Cell Capacity of the Rat Auditory Thalamus over Time

Author:

Engert Jonas1ORCID,Spahn Bjoern1ORCID,Sommerer Sabine1,Ehret Kasemo Totta1,Hackenberg Stephan1ORCID,Rak Kristen1ORCID,Voelker Johannes1ORCID

Affiliation:

1. Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany

Abstract

Neural stem cells (NSCs) have been recently identified in the neonatal rat medial geniculate body (MGB). NSCs are characterized by three cardinal features: mitotic self-renewal, formation of progenitors, and differentiation into all neuroectodermal cell lineages. NSCs and the molecular factors affecting them are particularly interesting, as they present a potential target for treating neurologically based hearing disorders. It is unclear whether an NSC niche exists in the rat MGB up to the adult stage and which neurogenic factors are essential during maturation. The rat MGB was examined on postnatal days 8, 12, and 16, and at the adult stadium. The cardinal features of NSCs were detected in MGB cells of all age groups examined by neurosphere, passage, and differentiation assays. In addition, real-time quantitative polymerase chain reaction arrays were used to compare the mRNA levels of 84 genes relevant to NSCs and neurogenesis. In summary, cells of the MGB display the cardinal features of NSCs up to the adult stage with a decreasing NSC potential over time. Neurogenic factors with high importance for MGB neurogenesis were identified on the mRNA level. These findings should contribute to a better understanding of MGB neurogenesis and its regenerative capacity.

Funder

Interdisciplinary Center for Clinical Research Wuerzburg

the Open Access Publication Fund of the University of Wuerzburg

Publisher

MDPI AG

Reference102 articles.

1. The world report on hearing, 2021;Chadha;Bull. World Health Organ.,2021

2. Emerging Approaches for Restoration of Hearing and Vision;Kleinlogel;Physiol. Rev.,2020

3. Sensorineural hearing loss in children;Smith;Lancet,2005

4. Microglial activation in the cochlear nucleus after early hearing loss in rats;Noda;Auris Nasus Larynx,2019

5. Deafness-induced changes in the auditory pathway: Implications for cochlear implants;Shepherd;Audiol. Neurootol.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3