Numerical Study and Optimal Design of the Butterfly Coil EMAT for Signal Amplitude Enhancement

Author:

Zhang Jingjun,Liu Min,Jia XiaojuanORCID,Gao Ruizhen

Abstract

The low energy conversion efficiency of electromagnetic acoustic transducers (EMATs) is a critical issue in nondestructive testing applications. To overcome this shortcoming, a butterfly coil EMAT was developed and optimized by numerical simulation based on a 2−D finite element model. First, the effect of the structural parameters of the butterfly coil EMAT was investigated by orthogonal test theory. Then, a modified butterfly coil EMAT was designed that consists of three−square permanent magnets with opposite polarity (TSPM−OP) to enhance the signal amplitude. Finally, the signal amplitude obtained from the three types of EMATs, that is, the traditional EMAT, the EMAT optimized by orthogonal test theory, and the modified EMAT with TSPM−OP, were analyzed and compared. The results show that the signal amplitude achieved by the modified butterfly coil EMAT with TSPM−OP can be increased by 4.97 times compared to the traditional butterfly coil EMAT.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3