A Scientometric Review of Research Status on Unfrozen Soil Water

Author:

Feng Shuna,Zhang Huan,Lv Jialong,Dyck Miles,Wu Qingbai,He HailongORCID

Abstract

Unfrozen soil water affects the physical, chemical, hydrological, and mechanical properties of frozen soils, and climate change makes these relationships more complicated. The objective of this study was to investigate the research status of unfrozen soil water using scientometrics. Publications on unfrozen water in frozen soil (UWFS) retrieved from the Web of Science were analyzed with scientometric software tools including VOSviewer, CiteSpace, and HistCite Pro. The annual publication trend, co-authorship of authors, organizations, and countries, and the co-occurrence of keywords were analyzed. The most utilized journals and high-impact publications were identified. The results showed that 2007 (the year the “Bali Road Map” was released) represents a turning point (from slow to rapid) in the development of research on unfrozen water in frozen soil. Researchers and organizations from China and the United States are the major contributors, while Cold Regions Science and Technology is the most utilized journal for publishing research pertaining to UWFS. Currently, there is still a lack of reliable and user-friendly methods and techniques for measuring unfrozen water content. Future efforts are required to understand the mechanisms governing the magnitude of unfrozen water content and to develop new approaches to accurately and rapidly measure unfrozen water content in both laboratory and in situ.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

China Postdoctoral Science Foundation

State Key Laboratory of Frozen Soil Engineering

Northwest A and F University

Higher Education Discipline Innovation Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3