Modified Maximum Pseudo Likelihood Method of Copula Parameter Estimation for Skewed Hydrometeorological Data

Author:

Joo Kyungwon,Shin Ju-YoungORCID,Heo Jun-Haeng

Abstract

For multivariate frequency analysis of hydrometeorological data, the copula model is commonly used to construct joint probability distribution due to its flexibility and simplicity. The Maximum Pseudo-Likelihood (MPL) method is one of the most widely used methods for fitting a copula model. The MPL method was derived from the Weibull plotting position formula assuming a uniform distribution. Because extreme hydrometeorological data are often positively skewed, capacity of the MPL method may not be fully utilized. This study proposes the modified MPL (MMPL) method to improve the MPL method by taking into consideration the skewness of the data. In the MMPL method, the Weibull plotting position formula in the original MPL method is replaced with the formulas which can consider the skewness of the data. The Monte-Carlo simulation has been performed under various conditions in order to assess the performance of the proposed method with the Gumbel copula model. The proposed MMPL method provides more precise parameter estimates than does the MPL method for positively skewed hydrometeorological data based on the simulation results. The MMPL method would be a better alternative for fitting the copula model to the skewed data sets. Additionally, applications of the MMPL methods were performed on the two weather stations (Seosan and Yeongwol) in South Korea.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference57 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3