Construction of Stretching-Bending Sequential Pattern to Recognize Work Cycles for Earthmoving Excavator from Long Video Sequences

Author:

Wu YiguangORCID,Wang MeizhenORCID,Liu Xuejun,Wang Ziran,Ma TianwuORCID,Xie Yujia,Li Xiuquan,Wang Xing

Abstract

Counting the number of work cycles per unit of time of earthmoving excavators is essential in order to calculate their productivity in earthmoving projects. The existing methods based on computer vision (CV) find it difficult to recognize the work cycles of earthmoving excavators effectively in long video sequences. Even the most advanced sequential pattern-based approach finds recognition difficult because it has to discern many atomic actions with a similar visual appearance. In this paper, we combine atomic actions with a similar visual appearance to build a stretching–bending sequential pattern (SBSP) containing only “Stretching” and “Bending” atomic actions. These two atomic actions are recognized using a deep learning-based single-shot detector (SSD). The intersection over union (IOU) is used to associate atomic actions to recognize the work cycle. In addition, we consider the impact of reality factors (such as driver misoperation) on work cycle recognition, which has been neglected in existing studies. We propose to use the time required to transform “Stretching” to “Bending” in the work cycle to filter out abnormal work cycles caused by driver misoperation. A case study is used to evaluate the proposed method. The results show that SBSP can effectively recognize the work cycles of earthmoving excavators in real time in long video sequences and has the ability to calculate the productivity of earthmoving excavators accurately.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3