Abstract
We propose a novel contactless ultrasonic method for monitoring the hardening behavior of cementitious materials. The goal of this method is to obtain high-quality data to compare the unique hardening process between rapid setting cement (RSC) and ordinary Portland cement (OPC) mortars without physical coupling to the surface of the specimens. To monitor the hardening behavior of cementitious materials, conventional approaches use contact or embedded-type sensors, which limit field application. Our solution is to measure leaky Rayleigh waves at the interface between air and cementitious materials, which allows for the estimation of the physical state of the medium in real time. The modulus development was back-calculated based on the increment of wave velocity using the developed sensor array and transform-based signal processing. We experimentally demonstrated that the proposed method possibly exhibits unique hardening information about flash setting, effects of a retarder, and modulus increments from RSC specimens.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献