Efficient Human Violence Recognition for Surveillance in Real Time

Author:

Huillcen Baca Herwin Alayn1ORCID,Palomino Valdivia Flor de Luz1ORCID,Gutierrez Caceres Juan Carlos2ORCID

Affiliation:

1. Academic Department of Engineering and Information Technology, Professional School of Systems Engineering, Faculty of Engineering, Jose Maria Arguedas National University, Andahuaylas 03701, Peru

2. Academic Department of Systems and Informatics Engineering, Professional School of Computer Science, Faculty of Production and Services Engineering, San Agustin of Arequipa National University, Arequipa 04001, Peru

Abstract

Human violence recognition is an area of great interest in the scientific community due to its broad spectrum of applications, especially in video surveillance systems, because detecting violence in real time can prevent criminal acts and save lives. The majority of existing proposals and studies focus on result precision, neglecting efficiency and practical implementations. Thus, in this work, we propose a model that is effective and efficient in recognizing human violence in real time. The proposed model consists of three modules: the Spatial Motion Extractor (SME) module, which extracts regions of interest from a frame; the Short Temporal Extractor (STE) module, which extracts temporal characteristics of rapid movements; and the Global Temporal Extractor (GTE) module, which is responsible for identifying long-lasting temporal features and fine-tuning the model. The proposal was evaluated for its efficiency, effectiveness, and ability to operate in real time. The results obtained on the Hockey, Movies, and RWF-2000 datasets demonstrated that this approach is highly efficient compared to various alternatives. In addition, the VioPeru dataset was created, which contains violent and non-violent videos captured by real video surveillance cameras in Peru, to validate the real-time applicability of the model. When tested on this dataset, the effectiveness of our model was superior to the best existing models.

Funder

Jose Maria Arguedas National University, Peru

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3