Triangle Water Index (TWI): An Advanced Approach for More Accurate Detection and Delineation of Water Surfaces in Sentinel-2 Data

Author:

Niu Lifeng,Kaufmann Hermann,Xu Guochang,Zhang Guangzong,Ji Chaonan,He Yufang,Sun Mengfei

Abstract

One of the most basic classification tasks in remote sensing is to distinguish between water bodies and other surface types. Although there are numerous techniques for extracting surface water from satellite imagery, there is still a need for research to more accurately identify water bodies with a view to efficient water maintenance in the future. Delineation accuracy is limited by varying amounts of suspended matter and different background land covers, especially those with low albedo. Therefore, the objective of this study was to develop an advanced index that improves the accuracy of extracting water bodies characterized by varying amounts of water constituents, especially in mountainous regions with highly rugged terrain, urban areas with cast shadows, and snow- and ice-covered areas. In this context, we propose a triangle water index (TWI) based on Sentinel-2 data. The principle of the TWI is that it first analyzes the reflectance values of water bodies in different wavelength bands to determine specific types. Then, triangles are constructed in a cartesian coordinate system according to the reflectance values of different water bodies in the respective wavelength bands. Finally, the TWI is achieved by using the triangle similarity theorem. We tested the accuracy and robustness of the TWI method using Sentinel-2 data of several water bodies in Mongolia, Canada, Sweden, the United States, and China and determined kappa coefficients and the overall precision. The performance of the classifier was compared with methods such as the normalized difference water index (NDWI), the modified normalized difference water index (MNDWI), the enhanced water index (EWI), the automated water extraction index (AWEI), and the land surface water index (LSWI). The classification accuracy of the TWI for all test sites is significantly higher than that of these indices that are commonly used classification methods. The overall precision of the TWI ranges between 95% and 97%. Moreover, the TWI is also effective in extracting flooded areas. Hence, the TWI can automatically extract different water bodies from Sentinel-2 data with high accuracy, which provides also a favorable analysis method for the study of droughts and flood disasters and for the general maintenance of water bodies in the future.

Funder

the Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3