Research on Blunder Detection Methods of Pseudorange Observation in GNSS Observation Domain

Author:

Ma XiapingORCID,Wang Qing,Yu Kegen,He XiaoxingORCID,Zhao Lidu

Abstract

Global Navigation Satellite System (GNSS) signal quality, type of receiver equipment, and external environment can cause GNSS observations to be anomalous, and these anomalies are sometimes reflected in GNSS pseudorange observations rather than phase observations. To better detect blunders in pseudorange observations, this paper proposes three pseudorange blunder detection methods under the same frequency and different code types (case1), and the same code type and different frequencies (case2), of pseudorange observations, which are the Code Observation Difference Method (CODM), the Inter-satellite Code Observation Difference Method (ICODM), and the Inter-epoch and Inter-satellite Code Observation Difference Method (IICODM). The corresponding thresholds for the constructed test statistics of the three detection methods were derived based on the Bessel formula. Performance analysis of the three detection methods was performed under case1 based on C2 and P2 code observation data of Global Positioning System (GPS) at 137 Multi-GNSS Experiment (MGEX) stations, and case2 based on BDS B1I and B3I frequency observation data of BeiDou Navigation Satellite System (BDS) at 232 MGEX stations, on 29 July 2022. The results show that the statistical information value of the three methods in case1 was significantly smaller than that in case2. In the first case, the maximum values of test statistics, RMSE and threshold mean values were 0.526, 0.752 and 2.243 m, respectively, while the corresponding values in case2 were 7.066, 4.490 and 13.480 m respectively. The reason for this is that the data quality of global GPS is higher than that of BDS and the differential observation equation eliminates or weakens more errors with the same frequency and different types of code pseudorange observations. Under the same conditions, compared with ICODM and IICODM, CODM has high computational efficiency and a simple mathematical model. It is recommended to use CODM first for pseudorange blunder detection in the GNSS observation domain. According to the RMSE of 3 times as the limit, it is recommended that the threshold be set to 5 m under case1 for GPS and 15 m under case2 for BDS, which is half the existing reference value. Finally, the blunder detection methods proposed can improve positioning performance through actual data verification.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Jiangxi University of Science and Technology High-level Talent Research Startup Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. Springer Handbook of Global Navigation Satellite Systems;Teunissen,2017

2. GPS Satellite Surveying;Leick,2015

3. GPS Surveying and Data Processing;Li,2013

4. An Automatic Editing Algorithm for GPS data

5. The synergism of GPS code and carrier measurements;Hatch;Proceedings of the International Geodetic Symposium on Satellite Doppler Positioning,1983

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3