Abstract
Global Navigation Satellite System (GNSS) signal quality, type of receiver equipment, and external environment can cause GNSS observations to be anomalous, and these anomalies are sometimes reflected in GNSS pseudorange observations rather than phase observations. To better detect blunders in pseudorange observations, this paper proposes three pseudorange blunder detection methods under the same frequency and different code types (case1), and the same code type and different frequencies (case2), of pseudorange observations, which are the Code Observation Difference Method (CODM), the Inter-satellite Code Observation Difference Method (ICODM), and the Inter-epoch and Inter-satellite Code Observation Difference Method (IICODM). The corresponding thresholds for the constructed test statistics of the three detection methods were derived based on the Bessel formula. Performance analysis of the three detection methods was performed under case1 based on C2 and P2 code observation data of Global Positioning System (GPS) at 137 Multi-GNSS Experiment (MGEX) stations, and case2 based on BDS B1I and B3I frequency observation data of BeiDou Navigation Satellite System (BDS) at 232 MGEX stations, on 29 July 2022. The results show that the statistical information value of the three methods in case1 was significantly smaller than that in case2. In the first case, the maximum values of test statistics, RMSE and threshold mean values were 0.526, 0.752 and 2.243 m, respectively, while the corresponding values in case2 were 7.066, 4.490 and 13.480 m respectively. The reason for this is that the data quality of global GPS is higher than that of BDS and the differential observation equation eliminates or weakens more errors with the same frequency and different types of code pseudorange observations. Under the same conditions, compared with ICODM and IICODM, CODM has high computational efficiency and a simple mathematical model. It is recommended to use CODM first for pseudorange blunder detection in the GNSS observation domain. According to the RMSE of 3 times as the limit, it is recommended that the threshold be set to 5 m under case1 for GPS and 15 m under case2 for BDS, which is half the existing reference value. Finally, the blunder detection methods proposed can improve positioning performance through actual data verification.
Funder
National Key Research and Development Program
National Natural Science Foundation of China
Jiangxi University of Science and Technology High-level Talent Research Startup Project
Subject
General Earth and Planetary Sciences
Reference34 articles.
1. Springer Handbook of Global Navigation Satellite Systems;Teunissen,2017
2. GPS Satellite Surveying;Leick,2015
3. GPS Surveying and Data Processing;Li,2013
4. An Automatic Editing Algorithm for GPS data
5. The synergism of GPS code and carrier measurements;Hatch;Proceedings of the International Geodetic Symposium on Satellite Doppler Positioning,1983
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献