Ship Classification in Synthetic Aperture Radar Images Based on Multiple Classifiers Ensemble Learning and Automatic Identification System Data Transfer Learning

Author:

Yan Zhenguo,Song Xin,Yang Lei,Wang Yitao

Abstract

With the continuous development of earth observation technology, space-based synthetic aperture radar (SAR) has become an important source of information for maritime surveillance, and ship classification in SAR images has also become a hot research direction in the field of maritime ship monitoring. In recent years, the remote sensing community has proposed several solutions to the problem of ship object classification in SAR images. However, it is difficult to obtain an adequate amount of labeled SAR samples for training classifiers, which limits the application of machine learning, particularly deep learning methods, in SAR image ship object classification. In contrast, as a real-time automatic tracking system for monitoring ships at sea, a ship automatic identification system (AIS) can provide a large amount of relatively easy-to-obtain labeled ship samples. Therefore, to solve the problem of SAR image ship classification and improve the classification performance of learning models with limited samples, we proposed a SAR image ship classification method based on multiple classifiers ensemble learning (MCEL) and AIS data transfer learning. The core idea of our method is to transfer the MCEL model trained on AIS data to SAR image ship classification, which mainly includes three steps: first, we use the acquired global space-based AIS data to build a dataset for ship object classification models training; then, the ensemble learning model is constructed by combining multiple base classifiers; and finally, the trained classification model is transferred to SAR images for ship type prediction. Experiments show that the proposed method achieves a classification accuracy of 85.00% for the SAR ship classification, which is better than the performance of each base classifier. This proves that AIS data transfer learning can effectively solve the problem of SAR ship classification with limited samples, and has important application value in maritime surveillance.

Funder

Scientific Research Project of National University of Defense Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3