Abstract
As the acquisition and application of color images become more and more extensive, color face recognition technology has also been vigorously developed, especially the recognition methods based on convolutional neural network, which have excellent performance. However, with the increasing depth and complexity of network models, the number of calculated parameters also increases, which means the training of most high-performance models depends on large-scale samples and expensive equipment. Therefore, the key to the current research is to realize a lightweight model while ensuring the recognition accuracy. At present, PCANet, a typical lightweight framework for deep learning, has achieved good results in most of the image recognition tasks, but its recognition accuracy for color face images, especially under occlusion, still needs to be improved. Therefore, a color occlusion face recognition method based on quaternion non-convex sparse constraint mechanism is proposed in this paper. Firstly, a quaternion non-convex sparse principal component analysis network model was constructed based on Lp regularization of strong sparsity. Secondly, the fixed point iteration method and coordinate descent method were established to solve the non-convex optimization problem. Finally, the occlusion recognition performance of the proposed method was verified on Georgia Tech, Color FERET, AR, and LFW-A Color face datasets.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference25 articles.
1. Face recognition technology research status review;Li;Electron. Technol. Softw. Eng.,2020
2. A review of research on small sample learning;Zhao;J. Softw.,2021
3. PCANet: A Simple Deep Learning Baseline for Image Classification?
4. Colour face recognition using fuzzy quaternion-based discriminant analysis
5. Eigenfaces for Recognition
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献