Fostering Trustworthiness of Federated Learning Ecosystem through Realistic Scenarios

Author:

Psaltis Athanasios12ORCID,Zafeirouli Kassiani1ORCID,Leškovský Peter3ORCID,Bourou Stavroula4ORCID,Vásquez-Correa Juan Camilo3ORCID,García-Pablos Aitor3ORCID,Cerezo Sánchez Santiago3ORCID,Dimou Anastasios1ORCID,Patrikakis Charalampos Z.2ORCID,Daras Petros1ORCID

Affiliation:

1. Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece

2. Department of Electrical and Electronics Engineering, University of West Attica, 12241 Athens, Greece

3. Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain

4. Synelixis Solutions S.A., 34100 Chalkida, Greece

Abstract

The present study thoroughly evaluates the most common blocking challenges faced by the federated learning (FL) ecosystem and analyzes existing state-of-the-art solutions. A system adaptation pipeline is designed to enable the integration of different AI-based tools in the FL system, while FL training is conducted under realistic conditions using a distributed hardware infrastructure. The suggested pipeline and FL system’s robustness are tested against challenges related to tool deployment, data heterogeneity, and privacy attacks for multiple tasks and data types. A representative set of AI-based tools and related datasets have been selected to cover several validation cases and distributed to each edge device to closely reflect real-world scenarios. The study presents significant outcomes of the experiments and analyzes the models’ performance under different realistic FL conditions, while highlighting potential limitations and issues that occurred during the FL process.

Funder

European Commission

Publisher

MDPI AG

Subject

Information Systems

Reference80 articles.

1. Liu, Y., Huang, A., Luo, Y., Huang, H., Liu, Y., Chen, Y., Feng, L., Chen, T., Yu, H., and Yang, Q. (2020, January 7–12). Fedvision: An online visual object detection platform powered by federated learning. Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA.

2. He, C., Shah, A.D., Tang, Z., Sivashunmugam, D.F.N., Bhogaraju, K., Shimpi, M., Shen, L., Chu, X., Soltanolkotabi, M., and Avestimehr, S. (2021). Fedcv: A federated learning framework for diverse computer vision tasks. arXiv.

3. Psaltis, A., Patrikakis, C.Z., and Daras, P. (2022, January 23–27). Deep Multi-Modal Representation Schemes For Federated 3D Human Action Recognition. Proceedings of the Computer Vision—ECCV 2022 Workshops, Tel Aviv, Israel. Proceedings, Part VI.

4. Mammen, P.M. (2021). Federated learning: Opportunities and challenges. arXiv.

5. Federated learning: Challenges, methods, and future directions;Li;IEEE Signal Process. Mag.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3