A Video Question Answering Model Based on Knowledge Distillation

Author:

Shao Zhuang1,Wan Jiahui2,Zong Linlin23

Affiliation:

1. China Academy of Space Technology, Beijing 100094, China

2. Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software, Dalian University of Technology, Dalian 116620, China

3. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Abstract

Video question answering (QA) is a cross-modal task that requires understanding the video content to answer questions. Current techniques address this challenge by employing stacked modules, such as attention mechanisms and graph convolutional networks. These methods reason about the semantics of video features and their interaction with text-based questions, yielding excellent results. However, these approaches often learn and fuse features representing different aspects of the video separately, neglecting the intra-interaction and overlooking the latent complex correlations between the extracted features. Additionally, the stacking of modules introduces a large number of parameters, making model training more challenging. To address these issues, we propose a novel multimodal knowledge distillation method that leverages the strengths of knowledge distillation for model compression and feature enhancement. Specifically, the fused features in the larger teacher model are distilled into knowledge, which guides the learning of appearance and motion features in the smaller student model. By incorporating cross-modal information in the early stages, the appearance and motion features can discover their related and complementary potential relationships, thus improving the overall model performance. Despite its simplicity, our extensive experiments on the widely used video QA datasets, MSVD-QA and MSRVTT-QA, demonstrate clear performance improvements over prior methods. These results validate the effectiveness of the proposed knowledge distillation approach.

Funder

Social Science Planning Foundation of Liaoning Province

State Key Laboratory of Novel Software Technology, Nanjing University

Dalian High-level Talent Innovation Support Plan

Publisher

MDPI AG

Subject

Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3