Gestational Age-Dependent Regulation of Transthyretin in Mice during Pregnancy

Author:

Cheng Shibin1ORCID,Huang Zheping1ORCID,Nakashima Akitoshi2,Sharma Surendra1

Affiliation:

1. Department of Pediatrics, Women & Infants Hospital of Rhode Island and Brown University, Providence, RI 02905, USA

2. Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan

Abstract

Our prior studies have shown that protein misfolding and aggregation in the placenta are linked to the development of preeclampsia, a severe pregnancy complication. We identified transthyretin (TTR) as a key component of the aggregated protein complex. However, the regulation of native TTR in normal pregnancy remains unclear. In this study, we found that pregnant mice exhibited a remarkable and progressive decline in serum TTR levels through gestational day (gd) 12–14, followed by an increase in late pregnancy and postpartum. Meanwhile, serum albumin levels showed a modest but statistically significant increase throughout gestation. TTR protein and mRNA levels in the liver, a primary source of circulating TTR, mirrored the changes observed in serum TTR levels during gestation. Intriguingly, a similar pattern of TTR alteration was also observed in the serum of pregnant women and pregnant interleukin-10-knockout (IL-10−/−) mice with high inflammation background. In non-pregnant IL-10−/− mice, serum TTR levels were significantly lower than those in age-matched wild-type mice. Administration of IL-10 to non-pregnant IL-10−/− mice restored their serum TTR levels. Notably, dysregulation of TTR resulted in fewer implantation units, lower fetal weight, and smaller litter sizes in human TTR-overexpressing transgenic mice. Thus, TTR may play a pivotal role as a crucial regulator in normal pregnancy, and inflammation during pregnancy may contribute to the downregulation of serum TTR presence.

Funder

NIH

Brown University Seed Award

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3