Identification of Prominent Genes between 3D Glioblastoma Models and Clinical Samples via GEO/TCGA/CGGA Data Analysis

Author:

Phon Brandon Wee Siang1ORCID,Bhuvanendran Saatheeyavaane1ORCID,Ayub Qasim234,Radhakrishnan Ammu Kutty1ORCID,Kamarudin Muhamad Noor Alfarizal1ORCID

Affiliation:

1. Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia

2. School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia

3. Monash University Malaysia Genomics Facility, Monash University, Bandar Sunway 47500, Malaysia

4. Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia

Abstract

A paradigm shift in preclinical evaluations of new anticancer GBM drugs should occur in favour of 3D cultures. This study leveraged the vast genomic data banks to investigate the suitability of 3D cultures as cell-based models for GBM. We hypothesised that correlating genes that are highly upregulated in 3D GBM models will have an impact in GBM patients, which will support 3D cultures as more reliable preclinical models for GBM. Using clinical samples of brain tissue from healthy individuals and GBM patients from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Chinese Glioma Genome Atlas (CGGA), and Genotype-Tissue Expression (GTEx) databases, several genes related to pathways such as epithelial-to-mesenchymal transition (EMT)-related genes (CD44, TWIST1, SNAI1, CDH2, FN1, VIM), angiogenesis/migration-related genes (MMP1, MMP2, MMP9, VEGFA), hypoxia-related genes (HIF1A, PLAT), stemness-related genes (SOX2, PROM1, NES, FOS), and genes involved in the Wnt signalling pathway (DKK1, FZD7) were found to be upregulated in brain samples from GBM patients, and the expression of these genes were also enhanced in 3D GBM cells. Additionally, EMT-related genes were upregulated in GBM archetypes (wild-type IDH1R132 ) that historically have poorer treatment responses, with said genes being significant predictors of poorer survival in the TCGA cohort. These findings reinforced the hypothesis that 3D GBM cultures can be used as reliable models to study increased epithelial-to-mesenchymal transitions in clinical GBM samples.

Funder

Fundamental Research Grant Scheme (FRGS) from the Ministry of Higher Education Malaysia

Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3