Multipotent Mesenchymal Cells Homing and Differentiation on Poly(ε-caprolactone) Blended with 20% Tricalcium Phosphate and Polylactic Acid Incorporating 10% Hydroxyapatite 3D-Printed Scaffolds via a Commercial Fused Deposition Modeling 3D Device

Author:

De Angelis Nicola12ORCID,Amaroli Andrea3ORCID,Lagazzo Alberto4ORCID,Barberis Fabrizio4,Zarro Pier Raffaele5,Cappelli Alessia5ORCID,Sabbieti Maria Giovanna5,Agas Dimitrios5

Affiliation:

1. Department of Surgical and Diagnostic Sciences (DISC), Unit of Implant and Prosthodontics, University of Genoa, 16132 Genoa, Italy

2. Department of Dentistry, University Trisakti, Jakarta 10110, Indonesia

3. Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy

4. Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, 16100 Genoa, Italy

5. School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy

Abstract

As highlighted by the ‘Global Burden of Disease Study 2019’ conducted by the World Health Organization, ensuring fair access to medical care through affordable and targeted treatments remains crucial for an ethical global healthcare system. Given the escalating demand for advanced and urgently needed solutions in regenerative bone procedures, the critical role of biopolymers emerges as a paramount necessity, offering a groundbreaking avenue to address pressing medical needs and revolutionize the landscape of bone regeneration therapies. Polymers emerge as excellent solutions due to their versatility, making them reliable materials for 3D printing. The development and widespread adoption of this technology would impact production costs and enhance access to related healthcare services. For instance, in dentistry, the use of commercial polymers blended with β-tricalcium phosphate (TCP) is driven by the need to print a standardized product with osteoconductive features. However, modernization is required to bridge the gap between biomaterial innovation and the ability to print them through commercial printing devices. Here we showed, for the first time, the metabolic behavior and the lineage commitment of bone marrow-derived multipotent mesenchymal cells (MSCs) on the 3D-printed substrates poly(e-caprolactone) combined with 20% tricalcium phosphate (PCL + 20% β-TCP) and L-polylactic acid (PLLA) combined with 10% hydroxyapatite (PLLA + 10% HA). Although there are limitations in printing additive-enriched polymers with a predictable and short half-life, the tested 3D-printed biomaterials were highly efficient in supporting osteoinductivity. Indeed, considering different temporal sequences, both 3D-printed biomaterials resulted as optimal scaffolds for MSCs’ commitment toward mature bone cells. Of interest, PLLA + 10% HA substrates hold the confirmation as the finest material for osteoinduction of MSCs.

Funder

UNICAM Noemi Avicolli funds

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3