Transcriptomic Analysis Reveals Functional Interaction of mRNA–lncRNA–miRNA in Steroidogenesis and Spermatogenesis of Gynogenetic Japanese Flounder (Paralichthys olivaceus)

Author:

Cheng Jie,Yang Fan,Liu Saisai,Zhao Haitao,Lu Wei,Zhang Quanqi

Abstract

Teleost fishes exhibit extraordinary diversity, plasticity and adaptability with their sex determination and sexual development, and there is growing evidence that non-coding RNAs (ncRNAs) are emerging as critical regulators of reproduction. Japanese flounder (Paralichthys olivaceus) is an important marine cultured fish that presents significant sexual dimorphism with bigger females, in which gynogenesis has been applied for aquaculture industry. In order to reveal the regulatory mechanisms of sexual development in gynogenetic female and sex-reversed neo-male P. olivaceus, the lncRNA–miRNA–mRNA interactions were investigated using high-throughput sequencing. A total of 6772 differentially expressed mRNAs (DEmRNAs), 2284 DElncRNAs, and 244 DEmiRNAs were obtained between gynogenetic female ovaries and sex-reversed neo-male testes. Genes in the steroid hormone biosynthesis and secretion pathway were enriched and mostly significantly upregulated in neo-male testes. Subsequently, network analysis uncovered high functional specificity for gynogenetic P. olivaceus sperm motility, as co-expressed DEmRNAs were significantly enriched in microtubule and cytoskeleton-related biological processes. Clustered miRNAs were characterized in the P. olivaceus genome with examples of the largest conserved let-7 clusters. The 20 let-7 members are distributed in 11 clusters and may not transcribe together with their neighboring miR-125b, with let-7 repressing cyp11a and miR-125b repressing esr2b, both as key steroidogenesis pathway genes. In summary, this study provides comprehensive insights into the mRNA–miRNA–lncRNA functional crosstalk in teleost sexual development and gametogenesis and will expand our understanding of ncRNA biology in teleost gynogenesis.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3