Author:
Cheng Jie,Yang Fan,Liu Saisai,Zhao Haitao,Lu Wei,Zhang Quanqi
Abstract
Teleost fishes exhibit extraordinary diversity, plasticity and adaptability with their sex determination and sexual development, and there is growing evidence that non-coding RNAs (ncRNAs) are emerging as critical regulators of reproduction. Japanese flounder (Paralichthys olivaceus) is an important marine cultured fish that presents significant sexual dimorphism with bigger females, in which gynogenesis has been applied for aquaculture industry. In order to reveal the regulatory mechanisms of sexual development in gynogenetic female and sex-reversed neo-male P. olivaceus, the lncRNA–miRNA–mRNA interactions were investigated using high-throughput sequencing. A total of 6772 differentially expressed mRNAs (DEmRNAs), 2284 DElncRNAs, and 244 DEmiRNAs were obtained between gynogenetic female ovaries and sex-reversed neo-male testes. Genes in the steroid hormone biosynthesis and secretion pathway were enriched and mostly significantly upregulated in neo-male testes. Subsequently, network analysis uncovered high functional specificity for gynogenetic P. olivaceus sperm motility, as co-expressed DEmRNAs were significantly enriched in microtubule and cytoskeleton-related biological processes. Clustered miRNAs were characterized in the P. olivaceus genome with examples of the largest conserved let-7 clusters. The 20 let-7 members are distributed in 11 clusters and may not transcribe together with their neighboring miR-125b, with let-7 repressing cyp11a and miR-125b repressing esr2b, both as key steroidogenesis pathway genes. In summary, this study provides comprehensive insights into the mRNA–miRNA–lncRNA functional crosstalk in teleost sexual development and gametogenesis and will expand our understanding of ncRNA biology in teleost gynogenesis.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献