An Optimization on the Neuronal Networks Based on the ADEX Biological Model in Terms of LUT-State Behaviors: Digital Design and Realization on FPGA Platforms

Author:

Wang YuleORCID,Taylan OsmanORCID,Alkabaa Abdulaziz S.ORCID,Ahmad IjazORCID,Tag-Eldin ElsayedORCID,Nazemi EhsanORCID,Balubaid MohammedORCID,Alqabbaa Hanan Saud

Abstract

Design and implementation of biological neural networks is a vital research field in the neuromorphic engineering. This paper presents LUT-based modeling of the Adaptive Exponential integrate-and-fire (ADEX) model using Nyquist frequency method. In this approach, a continuous term is converted to a discrete term by sampling factor. This new modeling is called N-LUT-ADEX (Nyquist-Look Up Table-ADEX) and is based on accurate sampling of the original ADEX model. Since in this modeling, the high-accuracy matching is achieved, it can exactly reproduce the spiking patterns, which have the same behaviors of the original neuron model. To confirm the N-LUT-ADEX neuron, the proposed model is realized on Virtex-II Field-Programmable Gate Array (FPGA) board for validating the final hardware. Hardware implementation results show the high degree of similarity between the proposed and original models. Furthermore, low-cost and high-speed attributes of our proposed neuron model will be validated. Indeed, the proposed model is capable of reproducing the spiking patterns in terms of low overhead costs and higher frequencies in comparison with the original one. The properties of the proposed model cause can make it a suitable choice for neuromorphic network implementations with reduced-cost attributes.

Funder

Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3