Changes in the Suitable Habitats of Three Endemic Fishes to Climate Change in Tibet

Author:

Mu Tong,He DekuiORCID,Zhu RenORCID,Sui Xiaoyun,Chen Yifeng

Abstract

As one of the most sensitive regions to global climate change, Tibet is subject to remarkable changes in biota over the past decades, including endemic fish species. However, no study has attempted to predict the changes in the distribution of Tibetan fishes, leaving a great blank for aquatic conservation in Tibet. Based on the Maximum Entropy model (MaxEnt), this study predicted the changes in the suitable habitats of three endemic fish species, including two species mainly inhabiting the rivers (Glyptosternon maculatum, Oxygymnocypris stewartii) and one species mainly inhabiting lakes (Gymnocypris selincuoensis) in Tibet under two representative concentration pathways (RCP2.6 and RCP8.5) under two future scenarios (2050 and 2090), and explored the impact of the barrier effects of hydropower projects on the suitable habitats of fish. The results showed that under the four scenarios, the net change in the suitable habitats of the G. maculatum was negative (−2.0–−18.8%), while the suitable habitats of the O. stewartii and G. selincuoensis would be expanded, with the net change of 60.0–238.3% and 46.4–56.9%, respectively. Under different scenarios, the suitable habitats of the three species had a tendency to migrate to a higher elevation, and the largest expansion in the range of migration was projected to occur under the 2090-RCP8.5 scenario. In addition, due to the impact of the hydropower projects, the ability of G. maculatum to obtain new suitable habitats from climate change would be reduced by 2.0–8.1%, which was less than the loss induced by climate change (5.5–25.1%), while the suitable habitats of O. stewartii would be reduced by 3.0–9.7%, which was more than the impact of climate change (about 1%). The results of this study have guiding significance for the conservation and management of fish resources diversity in the Yarlung Tsangpo River basin and Siling Co basin of Tibet, and also provide a reference for the coordination and scientific planning of hydropower projects in Tibet.

Funder

the Strategic Priority Research Program of Chinese Academy of Sciences

Second Tibetan Plateau Scientific Expedition and Research

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3