Architectural Distortion-Based Digital Mammograms Classification Using Depth Wise Convolutional Neural Network

Author:

Rehman Khalil urORCID,Li JianqiangORCID,Pei YanORCID,Yasin Anaa,Ali Saqib,Saeed Yousaf

Abstract

Architectural distortion is the third most suspicious appearance on a mammogram representing abnormal regions. Architectural distortion (AD) detection from mammograms is challenging due to its subtle and varying asymmetry on breast mass and small size. Automatic detection of abnormal ADs regions in mammograms using computer algorithms at initial stages could help radiologists and doctors. The architectural distortion star shapes ROIs detection, noise removal, and object location, affecting the classification performance, reducing accuracy. The computer vision-based technique automatically removes the noise and detects the location of objects from varying patterns. The current study investigated the gap to detect architectural distortion ROIs (region of interest) from mammograms using computer vision techniques. Proposed an automated computer-aided diagnostic system based on architectural distortion using computer vision and deep learning to predict breast cancer from digital mammograms. The proposed mammogram classification framework pertains to four steps such as image preprocessing, augmentation and image pixel-wise segmentation. Architectural distortion ROI’s detection, training deep learning, and machine learning networks to classify AD’s ROIs into malignant and benign classes. The proposed method has been evaluated on three databases, the PINUM, the CBIS-DDSM, and the DDSM mammogram images, using computer vision and depth-wise 2D V-net 64 convolutional neural networks and achieved 0.95, 0.97, and 0.98 accuracies, respectively. Experimental results reveal that our proposed method outperforms as compared with the ShuffelNet, MobileNet, SVM, K-NN, RF, and previous studies.

Funder

Dr. Lijianqiang

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference56 articles.

1. Fact Sheet World Health Organization; WHO https://www.who.int/news-room/fact-sheets/detail/cancer

2. Detecting and classifying lesions in mammograms with deep learning;Ribli;Sci. Rep.,2018

3. Mammography and Breast Imaging Resoruces https://www.acr.org/Clinical-Resources/Breast-Imaging-Resources

4. Architectural Distortion of the Breast

5. Development and Assessment of a New Global Mammographic Image Feature Analysis Scheme to Predict Likelihood of Malignant Cases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3