LmCht5-1 and LmCht5-2 Promote the Degradation of Serosal and Pro-Nymphal Cuticles during Locust Embryonic Development

Author:

Zhang TingtingORCID,Huo Yanjun,Dong Qing,Liu Weiwei,Gao Lu,Zhou Jiannan,Li Daqi,Zhang Xueyao,Zhang Jianzhen,Zhang Min

Abstract

The success of the degradation of the extraembryonic serosal cuticle and the second embryonic cuticle (pro-nymphal cuticle) is essential for the development and molting of nymph from egg in Orthoptera Locusta migratoria. Chitinase 5 is an important gene for chitin degradation in nymphs and in the egg stage. In this study, we investigated the important roles of chitinase 5-1 (LmCht5-1) and chitinase 5-2 (LmCht5-2) in the degradation of the serosal and pro-nymphal cuticles during locust embryonic development. The serosal cuticle degrades from 7-day-old embryos (E7) to E13, along with the degradation of the pro-nymphal cuticle, which begins at E12 to E14. The mRNA and protein of LmCht5-1 and LmCht5-2 are expressed during the degradation process of the serosal cuticle and the pro-nymphal cuticle. RNAi experiments at the embryonic stage show that both dsLmCht5-1 and dsLmCht5-2 contribute to the failure of development in early and late embryogenesis. Further, during the serosal cuticle molting process, ultra-structure analysis indicated that dsLmCht5-1 prevented the loss of the coarse chitin layer in the upper part in both early and late embryogenesis. Meanwhile, dsLmCht5-2 blocked the degradation of the lower fine chitin layer at the early stage and blocked the chitin degradation of loose coarse chitin in the late molting process. During the degradation of the pro-nymphal cuticle, dsLmCht5-1 suppresses chitin degradation between layers in the procuticle, while dsLmCht5-2 suppresses chitin degradation into filaments inside of the layer. In summary, our results suggest that both LmCht5-1 and LmCht5-2 contribute to the degradation of the serosal and pro-nymphal cuticles during the locust embryonic stage.

Funder

National Natural Science Foundation of China

Shanxi “1331” project and the Training Program for Young Researchers in Colleges and Universities of Shanxi Province

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3