Stress-Reducing Effect of a 50 Hz Electric Field in Mice after Repeated Immobilizations, Electric Field Shields, and Polarization of the Electrodes

Author:

Harakawa ShinjiORCID,Nedachi Takaki,Shinba Toshikazu,Suzuki Hiroshi

Abstract

In BALB/c mice, immobilization-increased plasma glucocorticoid (GC) levels are suppressed by extremely low frequency (ELF) electric fields (EF). The aim of this study was to advance our understanding of the biological effects of ELF-EF, using its suppressive effect on the GC response. Mice were exposed to a 50 Hz EF of 10 kV/m via a parallel plate electrode and immobilized as needed. We examined the suppressive effect of ELF-EF on GC level change after repeated immobilizations, electrode polarization, and EF shielding of different portions of the mouse body parts. Additionally, bodyweight changes owing to stress and EF were examined. Immobilization-induced reduction in the plasma GC levels was reproduced in mice with stress and EF exposure, regardless of the stress episode numbers and electrode polarization. Furthermore, when the head of mice was shielded from the EF, the suppressive effect was possibly relatively lower than that when the abdomen was shielded. The bodyweight of the mice decreased for 3 days after immobilization before recovering; ELF-EF did not affect the bodyweight. Thus, to elicit the biological effects of the EF, not only the size of the area where the EF is distributed but also the area where the field is distributed should be important. The results also confirmed the stableness of the present experimental system, at least in terms of the stress-reducing effect. In addition, the restriction in this study caused weight loss, but ELF-EF was not considered to affect it. The results improve the understanding of the biological effect and medical applications of ELF-EF.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference50 articles.

1. Gaps in Knowledge Relevant to the “Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz–100 kHz)”

2. Principles for Non-Ionizing Radiation Protection

3. GUIDELINES FOR LIMITING EXPOSURE TO TIME-VARYING ELECTRIC AND MAGNETIC FIELDS (1 Hz TO 100 kHz)

4. Extremely Low Frequency Fields Environmental Health Criteria Monograph No. 238https://www.who.int/publications/i/item/9789241572385

5. Effect of exposure to a high-voltage alternating current electric field on muscle extensibility;Mitani;J. Jpn. Soc. Balneol. Climatol. Phys. Med.,2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3