Interactive Effects of Flooding Duration and Sediment Texture on the Growth and Adaptation of Three Plant Species in the Poyang Lake Wetland

Author:

Liu Ying12,Li Jie3ORCID,Liu Yizhen13ORCID,He Liang1,Yang Shanshan3,Gong Huiying3,Xu Ruixin3,Yao Xingzi3,Ge Gang13

Affiliation:

1. Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, Nanchang University, Nanchang 330031, China

2. Institute of Life Science, Nanchang University, Nanchang 330031, China

3. School of Life Science, Nanchang University, Nanchang 330031, China

Abstract

Flooding duration and sediment texture play vital roles in the growth and adaptation of wetland plants. However, there is a lack of research on the interactive effects of flooding duration and sediments on wetland plants. A two-factor experiment with flooding duration and sediment texture was designed in the study, involving three plant species commonly found in the Poyang Lake wetland (i.e., Carex cinerascens, Phalaris arundinacea, and Polygonum criopolitanum). Our findings were as follows: (i) Sediments play a crucial role in the growth and adaptation of hygrophilous plants, but they exhibited a weaker effect than flooding. (ii) Sediment texture mediates flooding to affect the stressing responses of wetland plant functional traits, including the leaf chlorophyll content, the plant height, and the number of leaves and ramets. (iii) Sediment texture forms interactive effects with flooding duration and directly influences hygrophilous plants. The results of this study help provide theoretical insights from a more scientific perspective for the prediction of hygrophilous plant dynamics and to facilitate the formulation of wetland management.

Funder

National Natural Science Foundation of China

Youth Science Fund Project in Jiangxi Province

Open Fund Program of Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3